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Abstract— Safe, agile, and socially compliant multi-robot
navigation in cluttered and constrained environments remains a
critical challenge. This is especially difficult with self-interested
agents in decentralized settings, where there is no central
authority to resolve conflicts induced by spatial symmetry.
We address this challenge by proposing a novel approach,
GAMECHAT, which facilitates safe, agile, and deadlock-free
navigation for both cooperative and self-interested agents. Key
to our approach is the use of natural language communica-
tion to resolve conflicts, enabling agents to prioritize more
urgent tasks and break spatial symmetry in a socially optimal
manner. Our algorithm ensures subgame perfect equilibrium,
preventing agents from deviating from agreed-upon behaviors
and supporting cooperation. Furthermore, we guarantee safety
through control barrier functions and preserve agility by
minimizing disruptions to agents’ planned trajectories. We
evaluate GAMECHAT in simulated environments with doorways
and intersections. The results show that even in the worst case,
GAMECHAT reduces the time for all agents to reach their goals
by over 35% from a naive baseline while doubling the rate
of ensuring the agent with a higher priority task reaches the
goal first, from 50% (equivalent to random chance) to a 100%
perfect performance at maximizing social welfare.

I. INTRODUCTION

It is challenging for robots to plan safe, agile, and
deadlock-free (situations where no robot can move toward
its goal for a few seconds) trajectories in cluttered and
constrained environments. First, in decentralized systems, we
have no central authority that coordinates agents in a manner
that deadlocks will be prevented or resolved. Second, with
self-interested agents [1] that have conflicting objectives, we
must ensure that jerk-agent behavior (jerk agents may break
previously agreed-upon consensuses or socially compliant
protocols leading to unsafe behavior) is not incentivized.
Third, symmetry between the agents (which occurs when
they are the same distance from a shared collision point and
have the same velocity) must be broken in a socially optimal
manner. If both move forward at the same speed they will
collide, and if neither moves, they will deadlock.

A. Main Contributions

We propose a new algorithm for safe, agile, deadlock-free,
and decentralized multi-robot navigation in symmetric, con-
strained environments (like passing through doorways and
narrow hallways). Our algorithm works for both cooperative
and self-interested agents, that is, when agents choose to
optimize their own objectives. Key to this approach is a
novel LLM-based communication module in which agents
automatically engage in a natural language dialogue with
each other to proactively resolve any conflicts that could
arise. Any conflict resolution is then executed via a low-
level dynamic game-theoretic controller. Our method, which
we call GAMECHAT, has the following properties:

• Subgame-Perfect Optimality: GAMECHAT includes a
game-theoretic strategy which yields a subgame perfect
equilibrium [2] (a guarantee that we have a Nash equi-
librium now and at all future times), so self-interested

Fig. 1. Two agents head toward a hospital and a grocery store in
a symmetric, constrained environment. In the left image, there is no
communication between the agents, causing a deadlock as the agents do
not know which should go first, and in the right image, GAMECHAT uses
natural language communication between decentralized agents to identify
their roles, thereby resolving the deadlock by prioritizing urgent tasks.

agents will choose to commit to our strategy, as there
is no incentive to deviate from it now or in the future.

• Welfare-Maximizing (socially optimal): GAMECHAT
is socially optimal–agents break symmetry by prioritiz-
ing more urgent tasks, maximizing social welfare.

• Safety: GAMECHAT uses control barrier functions
(CBFs) [3], to guarantee safe trajectories.

• Agility: GAMECHAT is minimally invasive, that is, the
speeds of the agents are decreased as little as possible,
and the agents do not spatially deviate from their desired
paths, preserving smooth trajectories.

We choose natural language as for communication as it
does not require a defined protocol. It also allows commu-
nication between robots and humans, which is crucial for a
future where humans and robots live and work together.

II. RELATED WORKS

Collision Avoidance: To guarantee safety, one can use con-
trol barrier functions (CBFs) [3], [4] which use the forward
invariance of a set. If an agent is in a safe set at some time,
then it will remain in that safe set for all future times. In
MPC-CBF [5], constraints are derived using CBFs and added
to the receding-horizon controller to prevent collisions.
Deadlock Resolution: Symmetry between agents can result
in deadlocks [6]. The simplest way to break symmetry is to
rely on the environment’s randomness or to randomly perturb
agents [4], but this can increase total cost. Heuristic-based
approaches, such as a right-hand rule [7], [8] improve over
random perturbations but are more centralized. Some meth-
ods design an auction mechanism [9], [10], [11], and agents
bid to cross the intersection using some bidding strategy. In
reservation-based systems [12], agents must reserve slots to
cross the intersection determined by the time to arrival.
Learning-based Methods: Deep reinforcement learning
(DRL) has been used for multi-robot decentralized collision
avoidance with local sensing [13]. Inverse reinforcement
learning (IRL) has been used to infer reward functions of
other agents for planning in dense crowds [14]. However,
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these methods have difficulty encoding safety constraints
and in out-of-distribution domains. LiveNet [15] is a recent
approach that encodes safety and agility via differentiable
CBFs within a neural network controller. This allows for
learnable multi-robot navigation in constrained spaces.
Game-theoretic Methods: For multi-agent planning with
self-interested agents, methods have been developed for dis-
tributed optimization in differential games. These algorithms
solve for Nash equilibria. Some are similar to direct methods
in trajectory optimization [16], [17] like Newton’s method.
They handle state and control input constraints and converge
quickly. These algorithms yield analytical solutions that
guarantee safety but not agility, and they require knowledge
of the other agents’ cost functions and policies/actions.
Multi-Robot Communication: In decentralized, cooper-
ative multi-robot environments, communication methods
are needed for coordination [18]. Graph Neural Networks
(GNNs) have been used to communicate the features of
local observations among a network of robots [19]. DMCA
[20] uses RL to learn selective communication to share
goal information with relevant neighbors. Further, Arul et
al. [21] created an RL method that learns what information
is important to communicate and when to communicate it,
reducing indiscriminate broadcasting.
LLMs for Robotics: Recently, some methods use LLMs or
Vision-Language Models (VLMs) in planning. Progprompt
[22] uses LLMs to generate the code for robotic policies.
On the multi-agent side, Garg et al. [23] use LLMs and
VLMs to resolve a deadlock after it occurs by identifying
a leader agent to move first. One method [24] uses VLMs to
detect people and assign scores to trajectories, which induces
socially compliant navigation. Most similar to our approach
is RoCo [25], where robots are each equipped with an LLM
instance and communicate in a natural language dialogue to
agree on a plan of action. Note, however, that RoCo is fully
cooperative while we investigate self-interested agents.

III. PROBLEM FORMULATION

In this section, we define a general problem for-
mulation. We begin with a modified Partially Observ-
able Stochastic Game (POSG) [26], defined by the tu-
ple:

〈
k, T,X , {U i}, T ,Ω, {Oi}, {Ri}

〉
. k is the number of

agents, T is the finite number of time steps in the game,
and X is the continuous state space. The superscript i ∈
{1, . . . , k} refers to the ith agent and the subscript t ∈
{0, . . . , T} refers to time step t; e.g., xi

t ∈ X is the state
of agent i at time t. Each agent i has a start state xi

0 and a
set of goal states Xg ⊂ X . The game ends if all agents have
reached their goals or T time steps have elapsed, whichever
is sooner. For an agent i, U i is the continuous control
space containing feasible inputs. The dynamics function
T : X × U i → X determines the state of an agent at time
t + 1 given its state and control input at time t. The set Ω
is the observation space, and whenever agent i arrives at a
new state, the observation function O : X → Ω yields a
local observation of its own and nearby agents’ states. We
can define a trajectory of agent i by Γi = (xi

0, . . . ,x
i
T )

and an input sequence by Ψi = (ui
0, . . . , u

i
T−1). For any

time t, Ci(xi
t) ⊆ X is the space occupied by agent i and

two robots i, j are in a collision if Ci(xi
t) ∩ Cj(xj

t ) ̸= ∅.
Each agent i strives to maximize its payoff, Ri(Γi,Γ−i),
which represents the payoff at the end of the game for
agent i if they play Γi and all other players take the
trajectories Γ−i = (Γ1, . . . ,Γi−1,Γi+1, . . . ,Γk). Agents are
rational, meaning that they will avoid collisions at all costs,

and among collision-free trajectories prefer the one which
minimizes the time-to-goal.

We now define what we call a social mini-game.

Definition III.1. A social mini-game (SMG) is a type of
POSG. Each agent has a desired trajectory Γ̃i which is what
the agent would follow if it were the only agent. The crucial
property that makes an SMG is that there is some time t
and pair of distinct agents i, j where Ci(xi

t) ∩ Cj(xj
t ) ̸= ∅

and xi
t ∈ Γ̃i,xj

t ∈ Γ̃j; i.e., following the desired trajectories
would cause the agents to collide at some point in time.

Additionally, each agent is assigned a social priority and
we want to maximize social welfare [27], defined as:

Definition III.2. Social welfare is defined by W =∑k
i=1

pi

τ i(Γi) . τ i(Γi) is the time-to-goal for agent i taking
trajectory Γi, and pi ∈ R+ is the social priority of agent i,
expressing how important it is for agent i to reach its goal.

Note that if pi > pj and τ i(Γi) = τ j(Γj), reducing agent
i’s time-to-goal would more positively impact social welfare
than reducing agent j’s time-to-goal by the same amount.

Next, agents will have to deviate from their desired
trajectory to avoid collisions and deadlocks, but we also want
to modify the desired trajectory as little as possible:

Definition III.3. The modified trajectory Γi,∗ is minimally
invasive if it satisfies the following two properties:

1) ∆θit = 0 for all t (at all times, the heading of the robot
does not deviate from the desired trajectory).

2) mint |vit| is maximized (the robot slows down as little
as is necessary to prevent a collision or deadlock).

Overall, given an SMG, our goal is to generate trajectories
that are safe, deadlock-free, welfare-maximizing, and mini-
mally invasive. We achieve this with GAMECHAT.

IV. METHODOLOGY
Here, we describe GAMECHAT in detail. First, we discuss

technical details of our environment and give an overview
of the approach. Next, we present how we implemented the
LLM dialogue between agents for prioritizing tasks. Finally,
we explain our game-theoretic control strategy and prove that
it results in a subgame perfect equilibrium.

A. Environment Details
Our environment contains two agents running single-

integrator unicycle dynamics. The state (x, y, θ) ∈ X con-
sists of 2D position and heading, and the control inputs
(v, ω) ∈ U i consist of both linear and angular velocity.
Ultimately, each agent i is trying to maximize its payoff
Ri. We implement this by defining a cost function J i and
using Model Predictive Control (MPC) to solve the following
receding horizon optimization problem:

(
Γi,∗,Ψi,∗

)
= argmin

(Γi,Ψi)

T−1∑
t=0

J i(xi
t, u

i
t) + J i

T (x
i
T ) (1a)

s.t. xi
t+1 = T (xi

t, u
i
t), ∀t ∈ {0, . . . , T − 1} (1b)

Ci(xi
t) ∩ Cj(xj

t) ̸= ∅, ∀t (1c)

umin ≤ ui
t ≤ umax, ∀t (1d)

xi
T ∈ X i

g . (1e)

At each time step, agent i (though the function Oi)
observes the position, heading, and velocity of the other



Fig. 2. Flow chart describing the logical flow of GAMECHAT. Blue box represents nodes involved in our novel LLM-based communication module.
Orange box represents nodes handling a social mini-game (some LLM nodes are partially covered, representing that the agent may or may not be in those
nodes during an SMG, as the communication could finish before an SMG begins or occur concurrently).

agent along with the position of the obstacles in the environ-
ment. The other agent and obstacles are treated as circular
and control barrier functions are created for each one. The
inequalities generated from these CBFs are added in the next
cycle of MPC as collision avoidance constraints (we refer the
reader to [18] for a detailed background on CBFs).

Our social mini-game S has a structure where both agents
have a straight-line desired trajectory to their respective
goals. Both agents must pass through the collision point
Q, which models a doorway or the central point of a tight
intersection. When both agents detect the existence of S,
each agent i is a distance di from Q. We model them as
thin, car-like objects of length l and zero width. Both agents
also share the same velocity constraint vmax.

B. Technical Approach
Our overall technical approach is diagrammed in Figure 2.

First, at the earliest time t when the agents observe each
other (i.e. xj

t ∈ Oi(xi
t) and xi

t ∈ Oj(xj
t )), the agents begin

sending messages back and forth until consensus is reached
or enough messages are sent without an agreement. Based
on the consensus, the agents assign themselves leader or
follower roles, determining which agent will pass through Q
first. If an SMG is detected before the dialogue comes to a
consensus (or if no agreement is reached), the agents will
default to and continue executing Strategy 1.

At each time step, the agents check to see if they are in
an SMG (equivalent to detecting an imminent collision). If
roles were not already assigned through communication, the
agents will assign themselves roles using Strategy 1 until a
consensus is reached, based on which they may change their
roles. The leader moves at vmax toward the goal and the
follower slows down and reaches Q as the leader leaves it.
We enforce the follower’s slowdown by lowering the linear
velocity upper bound (1d) from vmax to divmax

l+dj
.

Theorem IV.1. GAMECHAT yields minimally invasive tra-
jectories (see Definition III.3).

C. LLMs for Priority Determination
Each agent has access to an LLM (gpt-4o-mini [28])

instance through the OpenAI API and a task in natural

language by way of an initial prompt. We tested with three
types of agents. In decreasing order of priority they are:
hospital agents, airport agents, and grocery agents. When the
agents observe each other, they take turns sending messages;
they receive the last message from the other agent, add it
to the dialogue history, and query the LLM (since we are
using the OpenAI API, there is network latency, but each
message is generated within one second) for a reply to send
back. The robots keep moving around the environment while
communicating and will stop conversing if they reach a
consensus as to which agent’s task has the higher priority
or each robot has sent four messages with no agreement. An
example conversation is shown in Figure 2.

If the agents come to a consensus, knowing which agent’s
task has a higher priority gives a way to break symmetry. It
also allows an agent with a slightly higher TTQ reach the
goal first, which would maximize social welfare. We ensured
the agents had distinct types instead of attempting to rank
the priority of different task strings within the same category.

Theorem IV.2. In a symmetric social mini-game (TTQi =
TTQj and τ i(Γ̃i) = τ j(Γ̃j)) where, without loss of general-
ity, pi > pj , the modified trajectories Γi,∗ and Γj,∗ generated
by GAMECHAT maximize social welfare.

D. Game Theoretic Strategy (Strategy 1)

In the event that communication is not possible, the agents
are not able to come to an agreement, or the agents end up in
an SMG while they are still in the process of communicating
(consensus has not yet been reached), we need a control
strategy for the agents to fall back on. Here, we describe our
proposed strategy (hereafter called Strategy 1):

1) If there will be no collision on the rest of the desired
trajectory Γ̃i, the agent sets linear velocity to vmax.

2) Let TTQi denote the time agent i would take to reach Q
(for now, assume there is asymmetry so TTQi ̸= TTQj).

3) If TTQi < TTQj , then agent i simply chooses vmax as
its linear velocity, taking the leader role.

4) If TTQi > TTQj , agent i selects a velocity so it reaches
Q at the instant that agent j completely clears Q. For
our environment, this means agent i will choose a linear



TABLE I
PERFORMANCE OF THE VARIOUS CONTROL METHODS IN DOORWAY SCENARIO.

Method (↓) # Coll. (↓) # DLs (↑) % CP (↓) Hi Pri. TTG (s) (↓) Makespan (s) (↑) Min v (m/s) (↓) ∆ Path (m)

MPC-CBF [5] 0 18 N/A N/A N/A N/A N/A
SMG-CBF [18] 0 0 50 11.300 ± 1.289 12.400 ± 0.873 0.118 ± 0.003 0.009 ± 0.002

GAMECHAT (no LLM) 0 0 50 10.733 ± 0.566 11.267 ± 0.194 0.200 ± 0.088 0.010 ± 0.001
GAMECHAT Ground Truth 0 0 100 10.400 ± 0.291 11.533 ± 0.194 0.227 ± 0.025 0.009 ± 0.001

GAMECHAT 0 0 100 10.467 ± 0.388 11.600 ± 0.291 0.228 ± 0.030 0.001 ± 0.001

velocity of divmax
l+dj

until reaching Q, from which point it
will choose vmax. It takes the follower role.

Theorem IV.3. If both agents follow Strategy 1 at all times,
then we have a subgame perfect equilibrium.

V. EXPERIMENTS AND RESULTS
There are three key questions we address. First, in the

absence of communication, does Strategy 1 perform bet-
ter than baseline methods? Second, when we incorporate
communication, how often do the conclusions of the LLMs
match up with the true priorities? Finally, how do the
communicative and noncommunicative methods compare?

We tracked several metrics. First, we counted the number
of collisions and deadlocks. We next examined metrics
involving priority: the percent of scenarios where the higher-
priority agent got to Q first and the average time to goal for
the higher priority agent. Finally, we tracked the makespan,
defined as the total duration of the scenario (also the slower
agent’s time to goal) and metrics involving invasiveness: the
slower agent’s minimum velocity prior to reaching Q (higher
is better since it indicates less significant slowdown) and the
average deviation from the desired straight-line paths.

The metrics are displayed in Table I. Note that MPC-
CBF, despite being safe from collisions, frequently failed
to complete the scenario since it lacks deadlock resolution
capabilities. All other methods, however, were always able to
avoid collisions and deadlocks, and they also had little path
deviation, indicating smoothness. Also, we ran a hardcoded
experiment (from here on referred to as the hardcoded
baseline) where the first agent needed to reach Q before
the other agent was permitted to begin moving. It obtains a
makespan of 18.4s in the doorway environment.
Noncommunicative Methods: We observe that GAMECHAT
(no LLM) is more agile than SMG-CBF as it causes the
second agent to slow down less (see Min v in Table I).
GAMECHAT (no LLM) has the lowest makespan of all the
methods, at the expense of not considering priority at all. It
struggles to identify a leader and follower until some time
has passed (see Figure 3), which increases makespan and
reduces its min v as one agent has to slow down greatly when
it suddenly realizes it is the follower only after it gets very
close to the doorway. However, overall, our game-theoretic
control strategy outperforms existing methods.
LLM Performance and Welfare Maximization: We mea-
sured the average duration of the LLM conversation as
2.767s with a standard deviation of 0.441s. At first, the
LLMs had difficulty with the task of conversing and de-
termining priority (e.g., task forgetting, hallucinating false
instructions, forgetting the consensus, etc.). But after care-
fully modifying the prompts, these problems became less
frequent, to the point that GAMECHAT performed as well
as when agents were already assigned the correct roles
(GAMECHAT Ground Truth). The correct consensus was
always reached since by default, LLMs are designed to
be very honest and cooperative. Since GAMECHAT was
reaches the correct ordering of priorities in the consensuses,
it maximizes social welfare (see Theorem IV.2). Even in the

Fig. 3. Trajectories generated by noncommunicative methods in the
symmetric doorway. Blue is a grocery agent and red is a hospital agent.

asymmetric case where the higher priority agent starts farther
away from Q, GAMECHAT can have it go first, something
the noncommunicative methods cannot do (see Figure 3).
Communicative vs. Noncommunicative Methods:
GAMECHAT (no LLM) has a lower makespan than the
communicative methods. However, since it does not
account for priorities at all, it (along with the other
noncommunicative methods) only has a 50% correct priority
rate (the same as guessing), while the communicative
methods give up a small amount of time in exchange for
a doubling in accurately ordering the priorities, which is a
worthwhile exchange as it greatly increases social welfare.

VI. CONCLUSION AND FUTURE WORK
We presented GAMECHAT, a new approach for safe,

agile, and socially optimal control in multi-robot constrained
environments with self-interested agents. Agents communi-
cate with each other by querying their LLMs to generate
messages. Agents fall back on a game-theoretic strategy if
they do not reach consensus. We demonstrate our approach’s
effectiveness in simulated constrained environments.

An interesting future direction is to address the challenge
of agents lying in communication. One could also work
on fine-tuning LLMs for better performance on the task
(which we did not focus on since their performance out-
of-the-box exceeded expectations) or running local models
for lower latency. Adding more types of agents and more
nuanced/complex backstories would be interesting as it could
help us find the failure point of using LLMs to determine
relative priority. Finally, we hope to bring GAMECHAT onto
physical robots to validate real-world performance.
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